3,089 research outputs found

    Numerical Hermitian Yang-Mills Connections and Kahler Cone Substructure

    Get PDF
    We further develop the numerical algorithm for computing the gauge connection of slope-stable holomorphic vector bundles on Calabi-Yau manifolds. In particular, recent work on the generalized Donaldson algorithm is extended to bundles with Kahler cone substructure on manifolds with h^{1,1}>1. Since the computation depends only on a one-dimensional ray in the Kahler moduli space, it can probe slope-stability regardless of the size of h^{1,1}. Suitably normalized error measures are introduced to quantitatively compare results for different directions in Kahler moduli space. A significantly improved numerical integration procedure based on adaptive refinements is described and implemented. Finally, an efficient numerical check is proposed for determining whether or not a vector bundle is slope-stable without computing its full connection.Comment: 38 pages, 10 figure

    Heterotic Line Bundle Standard Models

    Get PDF
    In a previous publication, arXiv:1106.4804, we have found 200 models from heterotic Calabi-Yau compactifications with line bundles, which lead to standard models after taking appropriate quotients by a discrete symmetry and introducing Wilson lines. In this paper, we construct the resulting standard models explicitly, compute their spectrum including Higgs multiplets, and analyze some of their basic properties. After removing redundancies we find about 400 downstairs models, each with the precise matter spectrum of the supersymmetric standard model, with one, two or three pairs of Higgs doublets and no exotics of any kind. In addition to the standard model gauge group, up to four Green-Schwarz anomalous U(1) symmetries are present in these models, which constrain the allowed operators in the four-dimensional effective supergravity. The vector bosons associated to these anomalous U(1) symmetries are massive. We explicitly compute the spectrum of allowed operators for each model and present the results, together with the defining data of the models, in a database of standard models accessible at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html. Based on these results we analyze elementary phenomenological properties. For example, for about 200 models all dimension four and five proton decay violating operators are forbidden by the additional U(1) symmetries.Comment: 55 pages, Latex, 3 pdf figure

    Stabilizing the Complex Structure in Heterotic Calabi-Yau Vacua

    Full text link
    In this paper, we show that the presence of gauge fields in heterotic Calabi-Yau compacitifications causes the stabilisation of some, or all, of the complex structure moduli of the Calabi-Yau manifold while maintaining a Minkowski vacuum. Certain deformations of the Calabi-Yau complex structure, with all other moduli held fixed, can lead to the gauge bundle becoming non-holomorphic and, hence, non-supersymmetric. This leads to an F-term potential which stabilizes the corresponding complex structure moduli. We use 10- and 4-dimensional field theory arguments as well as a derivation based purely on algebraic geometry to show that this picture is indeed correct. An explicit example is presented in which a large subset of complex structure moduli is fixed. We demonstrate that this type of theory can serve as the hidden sector in heterotic vacua and can co-exist with realistic particle physics.Comment: 17 pages, Late

    Quiver Structure of Heterotic Moduli

    Get PDF
    We analyse the vector bundle moduli arising from generic heterotic compactifications from the point of view of quiver representations. Phenomena such as stability walls, crossing between chambers of supersymmetry, splitting of non-Abelian bundles and dynamic generation of D-terms are succinctly encoded into finite quivers. By studying the Poincar\'e polynomial of the quiver moduli space using the Reineke formula, we can learn about such useful concepts as Donaldson-Thomas invariants, instanton transitions and supersymmetry breaking.Comment: 38 pages, 5 figures, 1 tabl

    Heterotic Model Building: 16 Special Manifolds

    Get PDF
    We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10) GUTs, which lead to consistent supersymmetric string vacua and have three chiral families. A total of about 29000 models is found, most of them corresponding to SO(10) GUTs. These models constitute a starting point for detailed heterotic model building on Calabi-Yau manifolds in the Kreuzer-Skarke list

    Heterotic domain wall solutions and SU(3) structure manifolds

    Full text link
    We examine compactifications of heterotic string theory on manifolds with SU(3) structure. In particular, we study N = 1/2 domain wall solutions which correspond to the perturbative vacua of the 4D, N =1 supersymmetric theories associated to these compactifications. We extend work which has appeared previously in the literature in two important regards. Firstly, we include two additional fluxes which have been, heretofore, omitted in the general analysis of this situation. This allows for solutions with more general torsion classes than have previously been found. Secondly, we provide explicit solutions for the fluxes as a function of the torsion classes. These solutions are particularly useful in deciding whether equations such as the Bianchi identities can be solved, in addition to the Killing spinor equations themselves. Our work can be used to straightforwardly decide whether any given SU(3) structure on a six-dimensional manifold is associated with a solution to heterotic string theory. To illustrate how to use these results, we discuss a number of examples taken from the literature.Comment: 34 pages, minor corrections in second versio

    Numerical Hermitian Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories

    Get PDF
    A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.Comment: 52 pages, 15 figures. LaTex formatting of figures corrected in version 2

    Heterotic Models from Vector Bundles on Toric Calabi-Yau Manifolds

    Get PDF
    We systematically approach the construction of heterotic E_8 X E_8 Calabi-Yau models, based on compact Calabi-Yau three-folds arising from toric geometry and vector bundles on these manifolds. We focus on a simple class of 101 such three-folds with smooth ambient spaces, on which we perform an exhaustive scan and find all positive monad bundles with SU(N), N=3,4,5 structure groups, subject to the heterotic anomaly cancellation constraint. We find that anomaly-free positive monads exist on only 11 of these toric three-folds with a total number of bundles of about 2000. Only 21 of these models, all of them on three-folds realizable as hypersurfaces in products of projective spaces, allow for three families of quarks and leptons. We also perform a preliminary scan over the much larger class of semi-positive monads which leads to about 44000 bundles with 280 of them satisfying the three-family constraint. These 280 models provide a starting point for heterotic model building based on toric three-folds.Comment: 41 pages, 5 figures. A table modified and a table adde

    Three Generations on the Quintic Quotient

    Get PDF
    A three-generation SU(5) GUT, that is 3x(10+5bar) and a single 5-5bar pair, is constructed by compactification of the E_8 heterotic string. The base manifold is the Z_5 x Z_5-quotient of the quintic, and the vector bundle is the quotient of a positive monad. The group action on the monad and its bundle-valued cohomology is discussed in detail, including topological restrictions on the existence of equivariant structures. This model and a single Z_5 quotient are the complete list of three generation quotients of positive monads on the quintic.Comment: 19 pages, LaTeX. v2: section on anomaly cancellation adde

    The MSSM Spectrum from (0,2)-Deformations of the Heterotic Standard Embedding

    Get PDF
    We construct supersymmetric compactifications of E_8 \times E_8 heterotic string theory which realise exactly the massless spectrum of the Minimal Supersymmetric Standard Model (MSSM) at low energies. The starting point is the standard embedding on a Calabi-Yau threefold which has Hodge numbers (h^11,h^21) = (1,4) and fundamental group Z_12, which gives an E_6 grand unified theory with three net chiral generations. The gauge symmetry is then broken to that of the standard model by a combination of discrete Wilson lines and continuous deformation of the gauge bundle. On eight distinct branches of the moduli space, we find stable bundles with appropriate cohomology groups to give exactly the massless spectrum of the MSSM.Comment: 37 pages including appendice
    corecore